Trail induces cell migration and invasion in apoptosis-resistant cholangiocarcinoma cells.
نویسندگان
چکیده
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising agent for cancer therapy; however, many cholangiocarcinoma cells are resistant to TRAIL-mediated apoptosis. Resistance to apoptosis may unmask TRAIL signaling cascades favoring tumor biology. Thus our aim was to examine whether TRAIL is expressed by human cholangiocarcinomas, and if so, to determine whether it promotes a malignant phenotype. To address this objective, TRAIL expression in human liver specimens was evaluated by immunohistochemistry. The effect of TRAIL on tumor cell migration, invasion, and proliferation was examined in three human cholangiocarcinoma cell lines. TRAIL expression was upregulated by cholangiocytes in preneoplastic disease, primary sclerosing cholangitis, and human cholangiocarcinoma specimens. TRAIL promoted tumor cell migration and invasion but did not induce cell proliferation. TRAIL-mediated cell migration and invasion was NF-kappaB dependent. These data demonstrate that TRAIL promotes cell migration and invasion via a NF-kappaB-dependent pathway in human cholangiocarcinoma cell lines, an observation that has a potential negative implication for TRAIL in cancer therapy.
منابع مشابه
Apatinib has anti-tumor effects and induces autophagy in colon cancer cells
Objective(s): Apatinib recently has been used to treat patients with gastric cancer, but the function of apatinib in colon cancer remains unclear. This study was conducted to investigate the impacts of apatinib on the biological function and its potential mechanism of colon cancer cells in vitro. Materials and Methods:The effect of apatinib in colon cancer cells were detected by assessing cell ...
متن کاملTrail Resistance Induces Epithelial-Mesenchymal Transition and Enhances Invasiveness by Suppressing PTEN via miR-221 in Breast Cancer
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can selectively induce apoptosis of cancer cells and is verified effective to various cancers. However, a variety of breast cancer cell lines are resistant to TRAIL and the mechanisms of resistance are largely unknown. In our present experiment, we successfully utilized breast cancer cell line MDA-MB-231 to establish TRAIL-resistan...
متن کاملMcl-1 mediates tumor necrosis factor-related apoptosis-inducing ligand resistance in human cholangiocarcinoma cells.
Cholangiocarcinomas are usually fatal neoplasms originating from bile duct epithelia. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising agent for cancer therapy, including cholangiocarcinoma. However, many cholangiocarcinoma cells are resistant to TRAIL-mediated apoptosis. Thus, our aim was to examine the intracellular mechanisms responsible for TRAIL resistance in ...
متن کاملSynergistic Effect of Subtoxic-dose Cisplatin and TRAIL to Mediate Apoptosis by Down-regulating Decoy Receptor 2 and Up-regulating Caspase-8, Caspase-9 and Bax Expression on NCI-H460 and A549 Cells
Objective(s): Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can selectively induce apoptosis in tumor cells, more than half of tumors including non-small cell lung cancer (NSCLC) exhibit TRAIL-resistance. The purpose of this study was to determine whether subtoxic-dose cisplatin and TRAIL could synergistically enhance apoptosis on NSCLC cells and investigate its under...
متن کاملKinome profiling of non-canonical TRAIL signaling reveals RIP1-Src-STAT3-dependent invasion in resistant non-small cell lung cancer cells.
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) triggers apoptosis selectively in tumor cells through interaction with TRAIL-R1/DR4 or TRAIL-R2/DR5 and this process is considered a promising avenue for cancer treatment. TRAIL resistance, however, is frequently encountered and hampers anti-cancer activity. Here we show that whereas H460 non-small cell lung cancer (NSCLC) ce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Gastrointestinal and liver physiology
دوره 290 1 شماره
صفحات -
تاریخ انتشار 2006